Advancing bio-based materials for sustainable solutions to food packaging

  • Geyer, R., Jambeck, JR & Law, KL Production, use, and fate of all plastics ever made. Sci. Adv. 3e1700782 (2017).

    Article Google Scholar

  • de Souza Machado, AA, Kloas, W., Zarfl, C., Hempel, S. & Rillig, MC Microplastics as an emerging threat to terrestrial ecosystems. Globe. Change Biol. 241405–1416 (2018).

    Article Google Scholar

  • Cole, M., Lindeque, P., Halsband, C. & Galloway, TS Microplastics as contaminants in the marine environment: a review. Mar. Bullet. Bull. 622588–2597 (2011).

    Article CAS Google Scholar

  • Zhang, J., Wang, L., Trasande, L. & Kannan, K. Occurrence of polyethylene terephthalate and polycarbonate microplastics in infant and adult feces. Environment. Sci. Technol. Lett. 8989–994 (2021).

    Article CAS Google Scholar

  • Li, T. et al. Developing fibrillated cellulose as a sustainable technological material. Nature 59047–56 (2021).

    Article CAS Google Scholar

  • Ates, B., Koytepe, S., Ulu, A., Gurses, C. & Thakur, VK Chemistry, structures, and advanced applications of nanocomposites from biorenewable resources. Chem. Rev. 1209304–9362 (2020).

    Article CAS Google Scholar

  • Virtanen, S., Chowreddy, RR, Irmak, S., Honkapää, K. & Isom, L. Food industry co-streams: potential raw materials for biodegradable mulch film applications. J. Polym. Environment. 251110–1130 (2017).

    Article CAS Google Scholar

  • Circular Economy Action Plan (European Commission, 2020); https://doi.org/10.2775/855540

  • Stahel, WR The circular economy. Nature 531435–438 (2016).

    Article CAS Google Scholar

  • Pauliuk, S. Making sustainability science a cumulative effort. Nat. Sustain. 32–4 (2020).

    Article Google Scholar

  • Moradali, MF & Rehm, BHA Bacterial biopolymers: from pathogenesis to advanced materials. Nat. Rev. Microbiol. 18195–210 (2020).

    Article CAS Google Scholar

  • Kaur, L., Khajuria, R., Parihar, L. & Singh, GD Polyhydroxyalkanoates: biosynthesis to commercial production—a review. J. Microbiol. Biotechnol. Food Sci. 61098–1106 (2017).

    Article CAS Google Scholar

  • Jabeen, N., Majid, I. & Nayik, GA Bioplastics and food packaging: a review. Cogent Food Agric. 11,117,749 (2015).

    Article Google Scholar

  • Yan, N. & Chen, X. Sustainability: don’t waste seafood waste. Nature 524155–157 (2015).

    Article CAS Google Scholar

  • Domard, A.A. perspective on 30 years research on chitin and chitosan. Carbohydr. polym. 84696–703 (2011).

    Article CAS Google Scholar

  • Tardy, BL et al. Deconstruction and reassembly of renewable polymers and biocolloids into next generation structured materials. Chem. Rev. 12114088–14188 (2021).

    Article CAS Google Scholar

  • Sachs, JD et al. Six transformations to achieve the Sustainable Development Goals. Nat. Sustain. 2805–814 (2019).

    Article Google Scholar

  • Jones, M., Gandia, A., John, S. & Bismarck, A. Leather-like material biofabrication using fungi. Nat. Sustain. 49–16 (2020).

    Article Google Scholar

  • Zhao, X., Cornish, K. & Vodovotz, Y. Narrowing the gap for bioplastic use in food packaging: an update. Environment. Sci. Technol. 544712–4732 (2020).

    Article CAS Google Scholar

  • Camberato, JJ, Gagnon, B., Angers, DA, Chantigny, MH & Pan, WL Pulp and paper mill by-products as soil amendments and plant nutrient sources. Can. J. Soil Sci. 86641–653 (2006).

    Article Google Scholar

  • Faria, M. et al. Minimum information reporting in bio-nano experimental literature. Nat. Nanotechnol. 13777–785 (2018).

    Article CAS Google Scholar

  • Schultz, D. & Campeau, LC Harder, better, faster. Nat. Chem. 12661–664 (2020).

    Article Google Scholar

  • Debecker, D.P. et al. Shaping effective practices for incorporating sustainability assessment in manuscripts submitted to ACS Sustainable Chemistry & Engineering: catalysis and catalytic processes. ACS Sustain. Chem. Eng. 94936–4940 (2021).

    Article CAS Google Scholar

  • Xia, Q. et al. A strong, biodegradable and recyclable lignocellulosic bioplastic. Nat. Sustain. 4627–635 (2021).

    Article Google Scholar

  • Vollmer, I. et al. Beyond mechanical recycling: giving new life to plastic waste. Angew. Chem. Int. Ed. 5915402–15423 (2020).

    Article CAS Google Scholar

  • RameshKumar, S., Shaiju, P., O’Connor, KE & P, RB Bio-based and biodegradable polymers—state-of-the-art, challenges and emerging trends. Curr. Open. Green Sustain. Chem. 2175–81 (2020).

    Article Google Scholar

  • Villanueva, A. & Wenzel, H. Paper waste—recycling, incineration or landfilling? A review of existing life cycle assessments. Waste Manager. 27S29–S46 (2007).

    Article CAS Google Scholar

  • Melo, FPL et al. Adding forests to the water-energy-food nexus. Nat. Sustain. 485–92 (2021).

    Article Google Scholar

  • Wyser, Y. & Shires, D. Increasing the quality and impact of manuscripts in the field of new materials. Packag. Technol. Sci. 323–5 (2019).

    Article Google Scholar

  • Kinnunen, P. et al. Local food crop production can fulfill the demand of less than one-third of the population. Nat. Food 1229–237 (2020).

    Article Google Scholar

  • Verghese, K., Lewis, H., Lockrey, S. & Williams, H. Packaging’s role in minimizing food loss and waste across the supply chain. Packag. Technol. Sci. 28603–620 (2015).

    Article Google Scholar

  • Wang, J. et al. Moisture and oxygen barrier properties of cellulose nanomaterial-based films. ACS Sustain. Chem. Eng. 649–70 (2018).

    Article CAS Google Scholar

  • Tardy, BL et al. Exploiting supramolecular interactions from polymeric colloids for strong anisotropic adhesion between solid surfaces. Adv. mater. 321906886 (2020).

    Article CAS Google Scholar

  • Sev, A. How can the construction industry contribute to sustainable development? A conceptual framework. Sustain. Dev. 17161–173 (2009).

    Article Google Scholar

  • Agarwal, J., Sahoo, S., Mohanty, S. & Nayak, SK Progress of novel techniques for lightweight automobile applications through innovative eco-friendly composite materials: a review. J. Thermoplast. Compos. mater. 33978–1013 (2020).

    Article CAS Google Scholar

  • Jabbour, L., Bongiovanni, R., Chaussy, D., Gerbaldi, C. & Beneventi, D. Cellulose-based Li-ion batteries: a review. Cellulose 201523–1545 (2013).

    Article CAS Google Scholar

  • Agate, S., Joyce, M., Lucia, L. & Pal, L. Cellulose and nanocellulose-based flexible-hybrid printed electronics and conductive composites—a review. Carbohydr. polym. 198249–260 (2018).

    Article CAS Google Scholar

  • Blankenship, RE et al. Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement. Science 332805–809 (2011).

    Article CAS Google Scholar

  • Ioannidis, J., Kim, B. & Trounson, A. How to design preclinical studies in nanomedicine and cell therapy to maximize the prospects of clinical translation. Nat. Biomed. Eng. 2797–809 (2018).

    Article CAS Google Scholar

  • Sumner, LW et al. Proposed minimum reporting standards for chemical analysis: Chemical Analysis Working Group (CAWG) Metabolomics Standards Initiative (MSI). Metabolomics 3211–221 (2007).

    Article CAS Google Scholar

  • Yam, K. The Wiley Encyclopedia of Packaging Technology (John Wiley & Sons, 2010).

  • Leave a Comment